博客
关于我
Introduction of moving block bootstrap (MBB)algorithm
阅读量:243 次
发布时间:2019-03-01

本文共 2880 字,大约阅读时间需要 9 分钟。

Because we can not use usual bootstrap sampling method to get subsamples from time series dataset, then the MBB was proposed to address this issue.

Suppose we have the time series following :
X 1 X_1 X1, X 2 X_2 X2, . . . . .... ...., X 10 X_{10} X10. Note that you can extend the footnote with other number or a symbol.
First step is to split the series into several blocks in which one should figure out the size of each block. Assume we let the size of each block equal to 2, then our blocked data would look like :

X 1 , X 2 ⏞ b l o c k   1 , X 3 , X 4 ⏞ b l o c k   2 , . . . . . . X 9 , X 10 ⏞ b l o c k   5 \overbrace{X_1,X_2}^{block\,1},\overbrace{X_3,X_4}^{block\,2},......\overbrace{X_9,X_{10}}^{block\,5} X1,X2 block1,X3,X4 block2,......X9,X10 block5

with the above blocks we get, now we can apply the bootstrap algorithm by taking a random sample of the blocks with replacement. The order in which the blocks are drawn is the position that they are placed in the bootstrap series. Hence, one probably blocks might be

b l o c k   1 , b l o c k 3   , b l o c k   5 , b l o c k   1 , b l o c k   2 block\,1, block3\,, block \,5, block\,1,block\,2 block1,block3,block5,block1,block2
and the corresponding original time series is
X 1 , X 2 ,       X 5 , X 6       X 9 , X 10       X 1 , X 2 ,       X 3 , X 4 ,       X_1,X_2,\,\,\,\,\,X_5,X_6\,\,\,\,\,X_9,X_{10}\,\,\,\,\,X_1,X_2,\,\,\,\,\,X_3,X_4,\,\,\,\,\, X1,X2,X5,X6X9,X10X1,X2,X3,X4,

These are the basic process of MBB for time series data. This can help us to get a new sample series with similar short term dependence data structure to the original data.

In python, you can rely on the pkg of “arch”, following I present a simple toy code from the with a minor revision.

from arch.bootstrap import MovingBlockBootstrap from numpy.random import RandomState  from numpy.random import standard_normalimport numpy as npy = standard_normal((6, 1))# to generate a time series with standard norm distribution.bs = MovingBlockBootstrap(2, y,random_state=RandomState(1234))# 2 is block size, y is your time series data, random_state #                                                        														is for reproducibility when requiredi=0bs_x=[ ] # an empty list to store the bootstrap series#here for is to look what the bootstrap looks like for each iteration, in our demonstrated case, we do boostrap only for 2 times.for data in bs.bootstrap(2):    print(data)    bs_y.append(data[0][0])     print(bs_y)    i=i+1# fc is function to compute the bootstrap series mean value.,you can replace it with your own definitiondef fc(a):    return a.mean(0)results = bs.apply(fc,2) ###to apply  a function defined by yourself to the bootstrap replicated data, "2" means apply the fc 2times to calculate the average of the boostrap data. of course , you can figure it with any number you want. print(results)

Thx for ur reading.

转载地址:http://uaet.baihongyu.com/

你可能感兴趣的文章
mysql5.6.21重置数据库的root密码
查看>>
Mysql5.6主从复制-基于binlog
查看>>
MySQL5.6忘记root密码(win平台)
查看>>
MySQL5.6的Linux安装shell脚本之二进制安装(一)
查看>>
MySQL5.6的zip包安装教程
查看>>
mysql5.7 for windows_MySQL 5.7 for Windows 解压缩版配置安装
查看>>
Webpack 基本环境搭建
查看>>
mysql5.7 安装版 表不能输入汉字解决方案
查看>>
MySQL5.7.18主从复制搭建(一主一从)
查看>>
MySQL5.7.19-win64安装启动
查看>>
mysql5.7.19安装图解_mysql5.7.19 winx64解压缩版安装配置教程
查看>>
MySQL5.7.37windows解压版的安装使用
查看>>
mysql5.7免费下载地址
查看>>
mysql5.7命令总结
查看>>
mysql5.7安装
查看>>
mysql5.7性能调优my.ini
查看>>
MySQL5.7新增Performance Schema表
查看>>
Mysql5.7深入学习 1.MySQL 5.7 中的新增功能
查看>>
Webpack 之 basic chunk graph
查看>>
Mysql5.7版本单机版my.cnf配置文件
查看>>