博客
关于我
Introduction of moving block bootstrap (MBB)algorithm
阅读量:243 次
发布时间:2019-03-01

本文共 2880 字,大约阅读时间需要 9 分钟。

Because we can not use usual bootstrap sampling method to get subsamples from time series dataset, then the MBB was proposed to address this issue.

Suppose we have the time series following :
X 1 X_1 X1, X 2 X_2 X2, . . . . .... ...., X 10 X_{10} X10. Note that you can extend the footnote with other number or a symbol.
First step is to split the series into several blocks in which one should figure out the size of each block. Assume we let the size of each block equal to 2, then our blocked data would look like :

X 1 , X 2 ⏞ b l o c k   1 , X 3 , X 4 ⏞ b l o c k   2 , . . . . . . X 9 , X 10 ⏞ b l o c k   5 \overbrace{X_1,X_2}^{block\,1},\overbrace{X_3,X_4}^{block\,2},......\overbrace{X_9,X_{10}}^{block\,5} X1,X2 block1,X3,X4 block2,......X9,X10 block5

with the above blocks we get, now we can apply the bootstrap algorithm by taking a random sample of the blocks with replacement. The order in which the blocks are drawn is the position that they are placed in the bootstrap series. Hence, one probably blocks might be

b l o c k   1 , b l o c k 3   , b l o c k   5 , b l o c k   1 , b l o c k   2 block\,1, block3\,, block \,5, block\,1,block\,2 block1,block3,block5,block1,block2
and the corresponding original time series is
X 1 , X 2 ,       X 5 , X 6       X 9 , X 10       X 1 , X 2 ,       X 3 , X 4 ,       X_1,X_2,\,\,\,\,\,X_5,X_6\,\,\,\,\,X_9,X_{10}\,\,\,\,\,X_1,X_2,\,\,\,\,\,X_3,X_4,\,\,\,\,\, X1,X2,X5,X6X9,X10X1,X2,X3,X4,

These are the basic process of MBB for time series data. This can help us to get a new sample series with similar short term dependence data structure to the original data.

In python, you can rely on the pkg of “arch”, following I present a simple toy code from the with a minor revision.

from arch.bootstrap import MovingBlockBootstrap from numpy.random import RandomState  from numpy.random import standard_normalimport numpy as npy = standard_normal((6, 1))# to generate a time series with standard norm distribution.bs = MovingBlockBootstrap(2, y,random_state=RandomState(1234))# 2 is block size, y is your time series data, random_state #                                                        														is for reproducibility when requiredi=0bs_x=[ ] # an empty list to store the bootstrap series#here for is to look what the bootstrap looks like for each iteration, in our demonstrated case, we do boostrap only for 2 times.for data in bs.bootstrap(2):    print(data)    bs_y.append(data[0][0])     print(bs_y)    i=i+1# fc is function to compute the bootstrap series mean value.,you can replace it with your own definitiondef fc(a):    return a.mean(0)results = bs.apply(fc,2) ###to apply  a function defined by yourself to the bootstrap replicated data, "2" means apply the fc 2times to calculate the average of the boostrap data. of course , you can figure it with any number you want. print(results)

Thx for ur reading.

转载地址:http://uaet.baihongyu.com/

你可能感兴趣的文章
NdkBootPicker 使用与安装指南
查看>>
ndk特定版本下载
查看>>
NDK编译错误expected specifier-qualifier-list before...
查看>>
Neat Stuff to Do in List Controls Using Custom Draw
查看>>
Necurs僵尸网络攻击美国金融机构 利用Trickbot银行木马窃取账户信息和欺诈
查看>>
Needle in a haystack: efficient storage of billions of photos 【转】
查看>>
NeHe OpenGL教程 07 纹理过滤、应用光照
查看>>
NeHe OpenGL教程 第四十四课:3D光晕
查看>>
Neighbor2Neighbor 开源项目教程
查看>>
neo4j图形数据库Java应用
查看>>
Neo4j图数据库_web页面关闭登录实现免登陆访问_常用的cypher语句_删除_查询_创建关系图谱---Neo4j图数据库工作笔记0013
查看>>
Neo4j图数据库的介绍_图数据库结构_节点_关系_属性_数据---Neo4j图数据库工作笔记0001
查看>>
Neo4j图数据库的数据模型_包括节点_属性_数据_关系---Neo4j图数据库工作笔记0002
查看>>
Neo4j安装部署及使用
查看>>
Neo4j电影关系图Cypher
查看>>
Neo4j的安装与使用
查看>>
Neo4j(1):图数据库Neo4j介绍
查看>>
Neo4j(2):环境搭建
查看>>
Neo4j(3):Neo4j Desktop安装
查看>>
Neo4j(4):Neo4j - CQL使用
查看>>