博客
关于我
Introduction of moving block bootstrap (MBB)algorithm
阅读量:243 次
发布时间:2019-03-01

本文共 2880 字,大约阅读时间需要 9 分钟。

Because we can not use usual bootstrap sampling method to get subsamples from time series dataset, then the MBB was proposed to address this issue.

Suppose we have the time series following :
X 1 X_1 X1, X 2 X_2 X2, . . . . .... ...., X 10 X_{10} X10. Note that you can extend the footnote with other number or a symbol.
First step is to split the series into several blocks in which one should figure out the size of each block. Assume we let the size of each block equal to 2, then our blocked data would look like :

X 1 , X 2 ⏞ b l o c k   1 , X 3 , X 4 ⏞ b l o c k   2 , . . . . . . X 9 , X 10 ⏞ b l o c k   5 \overbrace{X_1,X_2}^{block\,1},\overbrace{X_3,X_4}^{block\,2},......\overbrace{X_9,X_{10}}^{block\,5} X1,X2 block1,X3,X4 block2,......X9,X10 block5

with the above blocks we get, now we can apply the bootstrap algorithm by taking a random sample of the blocks with replacement. The order in which the blocks are drawn is the position that they are placed in the bootstrap series. Hence, one probably blocks might be

b l o c k   1 , b l o c k 3   , b l o c k   5 , b l o c k   1 , b l o c k   2 block\,1, block3\,, block \,5, block\,1,block\,2 block1,block3,block5,block1,block2
and the corresponding original time series is
X 1 , X 2 ,       X 5 , X 6       X 9 , X 10       X 1 , X 2 ,       X 3 , X 4 ,       X_1,X_2,\,\,\,\,\,X_5,X_6\,\,\,\,\,X_9,X_{10}\,\,\,\,\,X_1,X_2,\,\,\,\,\,X_3,X_4,\,\,\,\,\, X1,X2,X5,X6X9,X10X1,X2,X3,X4,

These are the basic process of MBB for time series data. This can help us to get a new sample series with similar short term dependence data structure to the original data.

In python, you can rely on the pkg of “arch”, following I present a simple toy code from the with a minor revision.

from arch.bootstrap import MovingBlockBootstrap from numpy.random import RandomState  from numpy.random import standard_normalimport numpy as npy = standard_normal((6, 1))# to generate a time series with standard norm distribution.bs = MovingBlockBootstrap(2, y,random_state=RandomState(1234))# 2 is block size, y is your time series data, random_state #                                                        														is for reproducibility when requiredi=0bs_x=[ ] # an empty list to store the bootstrap series#here for is to look what the bootstrap looks like for each iteration, in our demonstrated case, we do boostrap only for 2 times.for data in bs.bootstrap(2):    print(data)    bs_y.append(data[0][0])     print(bs_y)    i=i+1# fc is function to compute the bootstrap series mean value.,you can replace it with your own definitiondef fc(a):    return a.mean(0)results = bs.apply(fc,2) ###to apply  a function defined by yourself to the bootstrap replicated data, "2" means apply the fc 2times to calculate the average of the boostrap data. of course , you can figure it with any number you want. print(results)

Thx for ur reading.

转载地址:http://uaet.baihongyu.com/

你可能感兴趣的文章
Nacos2.X 配置中心源码分析:客户端如何拉取配置、服务端配置发布客户端监听机制
查看>>
NacosClient客户端搭建,微服务注册进nacos
查看>>
Nacos原理
查看>>
Nacos发布0.5.0版本,轻松玩转动态 DNS 服务
查看>>
Nacos启动异常
查看>>
Nacos和Zookeeper对比
查看>>
Nacos在双击startup.cmd启动时提示:Unable to start embedded Tomcat
查看>>
Nacos如何实现Raft算法与Raft协议原理详解
查看>>
Nacos安装教程(非常详细)从零基础入门到精通,看完这一篇就够了
查看>>
Nacos实战攻略:从入门到精通,全面掌握服务治理与配置管理!(下)
查看>>
Nacos心跳机制实现快速上下线
查看>>
Nacos服务注册与发现demo
查看>>
Nacos服务注册总流程(源码分析)
查看>>
nacos服务注册流程
查看>>
nacos本地可以,上服务器报错
查看>>
Nacos注册中心有几种调用方式?
查看>>
nacos注册失败,Feign调用失败,feign无法注入成我们的bean对象
查看>>
nacos源码 nacos注册中心1.4.x 源码 nacos源码如何下载 nacos 客户端源码下载地址 nacos discovery下载地址(一)
查看>>
Nacos简介、下载与配置持久化到Mysql
查看>>
Nacos简介和控制台服务安装
查看>>