博客
关于我
Introduction of moving block bootstrap (MBB)algorithm
阅读量:243 次
发布时间:2019-03-01

本文共 2880 字,大约阅读时间需要 9 分钟。

Because we can not use usual bootstrap sampling method to get subsamples from time series dataset, then the MBB was proposed to address this issue.

Suppose we have the time series following :
X 1 X_1 X1, X 2 X_2 X2, . . . . .... ...., X 10 X_{10} X10. Note that you can extend the footnote with other number or a symbol.
First step is to split the series into several blocks in which one should figure out the size of each block. Assume we let the size of each block equal to 2, then our blocked data would look like :

X 1 , X 2 ⏞ b l o c k   1 , X 3 , X 4 ⏞ b l o c k   2 , . . . . . . X 9 , X 10 ⏞ b l o c k   5 \overbrace{X_1,X_2}^{block\,1},\overbrace{X_3,X_4}^{block\,2},......\overbrace{X_9,X_{10}}^{block\,5} X1,X2 block1,X3,X4 block2,......X9,X10 block5

with the above blocks we get, now we can apply the bootstrap algorithm by taking a random sample of the blocks with replacement. The order in which the blocks are drawn is the position that they are placed in the bootstrap series. Hence, one probably blocks might be

b l o c k   1 , b l o c k 3   , b l o c k   5 , b l o c k   1 , b l o c k   2 block\,1, block3\,, block \,5, block\,1,block\,2 block1,block3,block5,block1,block2
and the corresponding original time series is
X 1 , X 2 ,       X 5 , X 6       X 9 , X 10       X 1 , X 2 ,       X 3 , X 4 ,       X_1,X_2,\,\,\,\,\,X_5,X_6\,\,\,\,\,X_9,X_{10}\,\,\,\,\,X_1,X_2,\,\,\,\,\,X_3,X_4,\,\,\,\,\, X1,X2,X5,X6X9,X10X1,X2,X3,X4,

These are the basic process of MBB for time series data. This can help us to get a new sample series with similar short term dependence data structure to the original data.

In python, you can rely on the pkg of “arch”, following I present a simple toy code from the with a minor revision.

from arch.bootstrap import MovingBlockBootstrap from numpy.random import RandomState  from numpy.random import standard_normalimport numpy as npy = standard_normal((6, 1))# to generate a time series with standard norm distribution.bs = MovingBlockBootstrap(2, y,random_state=RandomState(1234))# 2 is block size, y is your time series data, random_state #                                                        														is for reproducibility when requiredi=0bs_x=[ ] # an empty list to store the bootstrap series#here for is to look what the bootstrap looks like for each iteration, in our demonstrated case, we do boostrap only for 2 times.for data in bs.bootstrap(2):    print(data)    bs_y.append(data[0][0])     print(bs_y)    i=i+1# fc is function to compute the bootstrap series mean value.,you can replace it with your own definitiondef fc(a):    return a.mean(0)results = bs.apply(fc,2) ###to apply  a function defined by yourself to the bootstrap replicated data, "2" means apply the fc 2times to calculate the average of the boostrap data. of course , you can figure it with any number you want. print(results)

Thx for ur reading.

转载地址:http://uaet.baihongyu.com/

你可能感兴趣的文章
MySQL存储引擎--MYSIAM和INNODB引擎区别
查看>>
Mysql存储引擎(1):存储引擎体系结构和介绍
查看>>
Mysql存储引擎(2):存储引擎特点
查看>>
MySQL存储引擎--MyISAM与InnoDB区别
查看>>
mysql存储总结
查看>>
mysql存储登录_php调用mysql存储过程会员登录验证实例分析
查看>>
MySql存储过程中limit传参
查看>>
MySQL存储过程入门
查看>>
mysql存储过程批量建表
查看>>
MySQL存储过程的使用实现数据快速插入
查看>>
mysql存储过程详解
查看>>
Mysql存表情符号发生错误
查看>>
MySQL学习-group by和having
查看>>
MySQL学习-MySQL数据库事务
查看>>
MySQL学习-MySQL条件查询
查看>>
MySQL学习-SQL语句的分类与MySQL简单查询
查看>>
MySQL学习-子查询及limit分页
查看>>
MySQL学习-排序与分组函数
查看>>
MySQL学习-连接查询
查看>>
Mysql学习总结(10)——MySql触发器使用讲解
查看>>